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Abstract 

Thermoreflectance thermal imaging technique uses light in the 
visible wavelength range and has a diffraction limit of ~250nm. 
Despite that TR is still capable of acquiring temperature signal 
from devices smaller in size down to ~3x below diffraction limit. 
Below diffraction limit, the detected thermoreflectance signal 
underestimates the true measured temperature by 360%. Image 
blurring was used in the forward problem to explain the apparent 
temperature of the device quite accurately. In most applications, 
there is no unambiguous model of the device temperature for 
forward problem and one needs to reconstruct the true 
temperature profiles of the sub-diffraction devices from their 
measured TR images. This is an ill-posed inverse problem which 
may not have a unique solution. Here, a maximum-a-posteriori 
(MAP) image reconstruction technique is used along with an 
Iterative Coordinate Descent (ICD) Optimization approach to 
solve this inverse problem and restore the true temperature 
profile of the devices. Preliminary results show that temperature 
of sub-diffraction heater lines down to ~150nm can be accurately 
estimated. 

1. Introduction 

Temperature is a key parameter that determines the performance 
and reliability of electronic and optoelectronic devices [1]–[5]. 
As device sizes are reduced to deep submicron scale, non-contact 
thermoreflectance thermal imaging (TRI) can be extremely 
valuable to study hot spots and the defects in integrated circuits. 

TR thermal imaging is based on the change in the surface or 
interface reflection coefficient with temperature. As a non-
contact characterization technique, and with about 250nm 
spatial, and 800ps temporal resolution, TR Imaging is well suited 
for steady-state and transient thermal characterization of 
electronic and thermoelectric devices [6]–[8].  

TR utilized to study self-heating at the transport bottlenecks in 
network of silver nanowire/single layer graphene hybrid films 
which resulted in the observation of super-Joule self-heating 
effect [9]. TR was further used to map the localized alternating 
Peltier heating and cooling as well as Joule heating at the Metal-
Insulator domain boundaries in electrically biased single 
crystalline VO2 nanobeams [6]. Moreover, due to its high 
temporal resolution (50ns with LED, 800ps with laser [8], [10]) 
TR can capture fast transient self-heating effects in high speed 
switching devices.  

While for device sizes smaller than the diffraction limit, the 
optical image is blurred and features are barely discernable, 
thermoreflectance thermal images of the same devices show 
clearly the thermal profile of the heated lines [9], [11]–[13]. This 
is due to the fact, that thermoreflectance uses lock-in technique 
with good signal-to-noise ratio, and because metal and 
semiconductor have thermoreflectance coefficients with 
different signs. The phase difference, akin to phase shift masks 
in optical lithography, can be used to identify the sharp 
boundaries of the heater line.  

Although, TR detects thermal signals from devices below 
diffraction limit, the apparent measured temperature is 
underestimated. Diffraction blurring convolves temperature 
signal from nanoscale features and from those in neighboring 
regions, and therefore, the apparent measured temperature profile 
reduces. If one knows the true temperature profile, by convolving 
it in the reflectance domain with the right diffraction function 
corresponding to properties of the imaging system, the measured 
apparent temperature profile could be obtained.  

Conversely, in practice, the true temperature profile is not known 
and must be estimated from its apparent measured temperature 
map. Since diffraction function is known, from properties of the 
imaging system and the wavelength of the light used, image 
processing techniques can be used to estimate the real 
temperature of the devices. In the following, a maximum-a-
posteriori (MAP) image reconstruction framework is proposed to 
perform this reconstruction. Numerical experiments were 
devised and solved to demonstrate the capabilities of the 
proposed framework.  

In section 2, experimental setup and methodologies are 
described. Section 3 summarizes the results for forward and 
inverse problem followed by conclusion in section 4.  

2. Experimental setup 

Device Fabrication 

Molecular beam epitaxy (MBE) was used to grow 5µm of 
In0.53Ga0.47As on InP substrate. The thin film was lattice matched 
to substrate by 100nm of In0.52Al0.48As at interface. Next, the 
native oxide was removed with one-minute dilute HF solution 
dip and 20 nm thick Al2O3 insulation layer was deposited using 
the atomic layer deposition (ALD) technique at 200 ⁰C. This step 
was followed by rapid thermal annealing at 450 ⁰C for 30s. 
Subsequently metal heater lines consisting of Au (~100nm) / Ti 
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(5 nm) were deposited by Electron beam lithography (EBL). The 
metal line thickness was measured to be 90nm. A series of heater 
lines 10m wide down to 100nm are fabricated. The length to 
width ratio of metal lines was fixed to 40. Electrical probing of 
the heater lines was facilitated by including four 80×80µm2 
contact pads for each heater line. These are used both for 
electrical biasing for TR thermal imaging, as well as to further 
independently confirm the temperature measurements by 
measuring the heater electrical resistance. A scanning electron 
micrograph (SEM) of a 200nm heater line is shown in Figure 1a. 
The corresponding vertical cross section is shown in Figure 1b. 

Thermoreflectance (TR) Thermal Imaging  

TR thermal imaging measures the change in the reflectance of 
the device under electrical bias due to temperature change. The 
schematic in Figure 1c illustrates the working principle of TR 
thermal imaging. While the device under test (DUT) is being 
biased by an electrical signal, a constant LED light is illuminated 
and the reflected light from the DUT is captured by a CCD 
camera. The change in reflectivity (ΔR) and the calibrated 
coefficient of thermoreflectance (CTR) are then used to extract the 
temperature change of the device (ΔT=1/CTR (ΔR/R0)).  In all the 
experimental results shown in this work, a 530nm illumination 
wavelength was used. The calibrated CTR for gold and InGaAs 
(with ~20nm oxide on top) at 530nm under 100x objective lens 
is -2.3×10-4 and 2×10-4, respectively. While the oxide is 
transparent to the light at visible wavelengths, it can impact the 
CTR which is studied in [14]. 

Temperature dependent current voltage measurement was 
performed using Four-point probe technique to determine 
temperature dependent electrical resistivity and thermal 
conductivity of the gold metal lines. From this technique the 
average temperature change of the line at different steady-state 
current levels were obtained and utilized to independently extract 
the coefficient of thermoreflectance (CTR) of the gold metal lines 
[12], [15]. Subsequently, these electrical resistivity and thermal 
conductivity of gold metal lines were used as input to finite 
element modeling described in the next section. 

 

Figure 1. Device structure, experimental setup and theoretical 
modeling. a. Scanning electron micrograph (SEM) of a 200nm 
wide heater line. b. Cross section of the device structure and 
dimensions. c. Principle of Thermoreflectance (TR) thermal 
imaging. d. Computational mesh for 200nm heater line for finite 
element modeling (FEM) in ANSYS. e. Temperature profile of 
200nm heater line obtained via FEM. 

Finite element numerical modeling 

ANSYS Parametric Design Language (APDL) was used to 
construct a finite element model (FEM) for heater lines with 
different diameters. Independent electrical and thermal 
characterization, electrical four points probe, 3ω and time 
domain thermoreflectance (TDTR) techniques, were used to 
extract electrical resistivity of the heater lines as well as thermal 
conductivity of different layers.  These material properties along 
with the electrical and thermal boundary conditions were input to 
the FEM model. FEM meshed structure of a 200 nm heater and 
its corresponding temperature profile are shown in Figure 1d and 
1e.  

ANSYS FEM results throughout this text are compared with 
experimental results, and were used to verify the methodology 
for solving the inverse image reconstruction problem. 

3. Results and discussions 

Sub-Diffraction TR Thermal Imaging (Forward Problem) 

According to the Rayleigh resolution criterion, also known as the 
diffraction limit, an imaging system cannot resolve two objects 
that are closer than a distance D. The distance D is proportional 
to the wavelength of the light used, and is inversely proportional 
to the numerical aperture (N.A.) of the imaging system (D ~ 1.22 
λ/N.A.). This distance corresponds to the radius of an Airy disc, 
that is point spread function (PSF) response of the imaging 
system, and can be appropriately modeled by a Gaussian function 
[13].  Figures 2a and 2b shows the CCD images of a 1µm heater 
line under 100x (N.A. =0.75) and 10x (N.A. =0.2) objective 
lenses, respectively. LED light with 530nm wavelength was used 
as the source for capturing this images under the microscope. 
This means the diffraction limit at 100x and 10x objective lenses 
are 0.35µm and 1.34µm. Thus, the 1µm device size is above 
diffraction and can be discerned at 100x (Figure 2a), while it is 
well below diffraction and obscured at 10x (Figure 2b). 

Although diffraction sets a limit to the minimum size of the 
device that can be discerned, TR thermal imaging still captures 
thermal signals for these devices. This is evident in Figures 2c 
and 2d. Figures 2c and 2d show the temperature profiles for 100x 
and 10x measurement of the same 1µm heater line. While at 10x 
the device optical image is obscured (Figure 2b), its temperature 
profile clearly is discernable (Figure 2d). This is due to the 
opposite signs of the coefficient of thermoreflectance (CTR) of the 
metal and the semiconductor. This is similar to using a 180º 
phase shift mask in photolithography, where the electric field 
sign is changed. This allows two features closer than the 
diffraction limit to be patterned. In TR imaging, the difference in 
sign of CTR results in the opposite sign of reflectance change with 
temperature which in turn creates zero crossings near the edges 
of the metal and substrate, hence the signal from metal and the 
substrate can be distinguished. 

But, what is the effect of diffraction on the accuracy of TR 
thermal imaging? In optical domain, images of devices below 
diffraction limit are filtered by the point spread function (Airy 
disc corresponding to the diffraction function). While in optical 
domain this cause the image to be obscured, in thermal domain it 
results in blurring of temperature profile and subsequently 



reduction in the observed thermal signal. This is also evident in 
comparison between Figures 2c and 2d, in which the apparent 
temperature signal obtained under 10x objective lens is about 3x 
smaller than the temperature signal at 100x.  

To further prove that this is the case, the following steps were 
taken. First the temperature profile at 100x was converted to the 
corresponding reflectance map knowing the nominal 
thermoreflectance coefficient of the materials. Next, this 
reflectance map is convolved with the diffraction function based 
on the parameters of the imaging system with 10x objective lens. 
The last step was then followed by converting the reflectance 
map back to temperature profile. This procedure is called forward 
modeling of the diffraction effect on TR thermal images. It is 
worth noting that the diffraction function is an Airy disc and can 
be approximated by a Gaussian function as shown in Equation 1. 

𝑓(𝑟) =  
1

√2𝜋
exp (−

(
2.44𝑟

𝜆𝑁
)2

2
) (1) 

Here, λ is the wavelength of the light and N is the focal number 
which is related to the numerical aperture (N.A.) by 1/2N.A.  

A comparison between the cross-sections of the 100x, 100x 
filtered (Blurred) and the 10x temperature profile results is 
shown in Figure 2e. This plot clearly shows that the diffraction 
does play a significant role in the temperature profile obtained 
from TR imaging for sub-diffraction devices, and by filtering the 
temperature profile with the correct diffraction function one can 
accurately predict the effect of diffraction on TR thermal images. 

 

Figure 2. Optical and TR thermal image of 1µm heater line. CCD 
images under (a) 100x and (b) 10x objective lenses. 
Corresponding TR thermal images for the 1µm wide heater line 
under (c) 100x and (d) 10x. (e) Temperature cross sections along 
A-A' for 100x (red) and 10x (blue). The green curve shows that 
the blurring the 100x results by the diffraction function 
accurately matches thermoreflectance measurements with lower 
numerical aperture lens at 10x.  

It should be pointed out, for these heater lines the average 
temperature and CTR can independently be extracted by electrical 
resistivity measurement. This can be in turn used to confirm the 
temperature values measured optically. However, it is not always 
possible to have an independent sensor to calibrate for each 
individual heat source that is below diffraction. For example, in 
nanoscale transistors, is not always possible to have independent 
electrical measurements for features inside the transistor. In 
practice one needs to calibrate the thermoreflectance coefficient 

using larger areas on the materials or devices. It will be quite 
beneficial if the calibration could then be extended for small size 
devices that are below diffraction limit.  
To examine the impact of diffraction and the forward modeling 
for device’s temperature distribution, an accurate estimate for the 
true temperature profile can be determined from the FEM model. 
The accuracy of FEM model is demonstrated elsewhere [12]. 
Subsequently, the following steps will permit obtaining sub-
diffraction temperature profile and compare it with the 
experimental results. 
1. The temperature profile is obtained from the ANSYS FEM 
simulation. 
2. Convert the temperature profile to reflectance map using the 
known values of the CTR of metal and substrate. (calibrated bulk 
values) 
3. The reflectance map is then blurred with the approximate 
optical diffraction function and then converted back to the 
temperature profile. This temperature profile then can be 
compared to the experimental results. 

These steps are taken in Figures 3 and 4. Figure 3a shows cross 
sections of the Gaussian intensity filter simulating the optical 
diffraction function at 100x (red), and 10x (blue). N.A for 10x 
and 100x are 0.2 and 0.75, respectively. Due to smaller numerical 
aperture, the Gaussian filter is wider for 10x and therefore 
resolution is lower (1.33µm compared to 0.35µm). Figure 3b and 
3c illustrate that by taking the steps 1-3 for a 1µm device and 
convolving the 100x and 10x filters with FEM results, the filtered 
response reproduces the experimental results on top of the heater 
very well. Figure 3b shows almost no change due to blurring at 
100x which agrees with the experimental results. On the other 
hand, Figure 3c shows a clear reduction in the apparent 
temperature at 10x, which also agrees with the experimental 
results.  

 

Figure 3. Modeling diffraction in Forward problem using FEM. 
(a) Cross sections of the Gaussian intensity filter simulating the 
optical diffraction function at 100x (red), and 10x (blue). R is the 
Rayleigh criterion. Comparison between TR, FEM, and blurred 
FEM results’ cross sections at (b) 100x, and (c) 10x. 

This approach is further employed to address the diffraction 
effect at 200nm. This is shown in Figure 4a-d. Figure 4a plots the 
temperature profile of the 200nm device obtained from FEM. 
Taking steps 1-3, the blurred results were obtained and shown 
above the experimental temperature profile in Figure 4b. 
Comparison between the cross sections shows excellent 
agreement for the apparent temperature at the top of the heater 
line between blurred numerical results and the experimental 
results. One should note that the difference at the tail of the 
temperature cross section is due to non-diffusive thermal effect 
and is discussed in [12]. From these simulations and experiments, 
one can easily conclude that the diffraction will change the 

100x 10x
 Width = 1µm and Length = 40µm
 FEM tail normalized with Au 

CTR~-2.2 10-4, to compare to 
experiment

X(m)

Y(


m
)

W1m, 10x objective lens

 

 

-20 -10 0 10 20 30

-10

0

10

20
0

5

10

15

20

25

X(m)

Y(


m
)

W1m, 100x objective lens

 

 

-20 -10 0 10 20 30

-10

0

10

20
5

10

15

20

25

(c) (d)

A

A'

W1m, 10x objective lens

X(m)

Y(


m
)

-20 -10 0 10 20 30

-10

0

10

20

W1m, 100x objective lens

X(m)

Y(


m
)

-20 -10 0 10 20 30

-10

0

10

20

(a) (b)
ΔT(K)

-10 -5 0 5 100

5

10

15

20

25

Y (m)


T(

K)

 

 

100x
10x

(e)

X(m)

Y(


m
)

W1m, 100x objective lens

 

 

-20 -10 0 10 20 30

-10

0

10

20
5

10

15

20

25

*
X(m)

Y(


m
)

W1m, 100x objective lens, blurred

 

 

-20 -10 0 10 20 30

-10

0

10

20
0

5

10

15

20

25

X(m)

Y(


m
)

 

 

-1 0 1

-1.5

-1

-0.5

0

0.5

1

1.5
2

4

6

8

10

12

14x 10-3

-10 -5 0 5 10
0

5

10

15

20

25

30

Y(m)


T(

K)

 

 

100x
100xblurred
10x

A

A'

Temperature Cross Section along A-A'

Temperature map at 100x 
ΔT(K) ΔT(K)Diffraction Function Blurred map at 100x

(a1)

(b)

(a2) (a3)

(e) -4 -3 -2 -1 0 1 2 30

5

10

15

20

25

Y (m)


T(

K
)

 

 

TRI100x
FEM
FEMblurred, 100x

(b)

100xDiffraction function

-4 -3 -2 -1 0 1 2 30

5

10

15

20

25

Y (m)


T(

K
)

 

 

TRI100x
FEM
FEMblurred, 10x

(c)

10x

-2 -1 0 1 20

0.005

0.01

0.015

0.02

X (m)

Approx. Diffraction function for different objective lenses

 

 

100x, R=0.35m
10x, R=1.33m

(a)
-4 -3 -2 -1 0 1 2 30

5

10

15

20

25

Y (m)


T(

K
)

 

 

TRI100x
FEM
FEMblurred, 100x

(b)

100xDiffraction function

-4 -3 -2 -1 0 1 2 30

5

10

15

20

25

Y (m)


T(

K
)

 

 

TRI100x
FEM
FEMblurred, 10x

(c)

10x

-2 -1 0 1 20

0.005

0.01

0.015

0.02

X (m)

Approx. Diffraction function for different objective lenses

 

 

100x, R=0.35m
10x, R=1.33m

(a)
-4 -3 -2 -1 0 1 2 30

5

10

15

20

25

Y (m)


T(

K
)

 

 

TRI100x
FEM
FEMblurred, 100x

(b)

100xDiffraction function

-4 -3 -2 -1 0 1 2 30

5

10

15

20

25

Y (m)


T(

K
)

 

 

TRI100x
FEM
FEMblurred, 10x

(c)

10x

-2 -1 0 1 20

0.005

0.01

0.015

0.02

X (m)

Approx. Diffraction function for different objective lenses

 

 

100x, R=0.35m
10x, R=1.33m

(a)



effective coefficient of thermoreflectance (CTR) of the sub-
diffraction size device and therefore the true temperature is 
underestimated using the nominal value of CTR. 

 

 

Figure 4. Comparison between experimental TR imaging, and 
blurred FEM temperature profile. (a) ANSYS temperature 
profile for the 200nm heater line. (b) Filtered result (Top) and 
experimental TR thermal image (bottom). TR is done with 530 
nm green LED light, under 100x objective lens with N.A. = 0.75. 
(c) Comparison between the cross sections shows excellent 
agreement between experiment and filtered FEM at the top of 
metal line. Non-diffusive heat transport explains the difference 
on the tail distribution [12]. 

Image Reconstruction (Inversion Problem) 

In many practical devices such as nanoscale transistors, one does 
not always have access to an independent sensor to calibrate the 
accurate temperature of the device under test. Instead, an 
apparent temperature profile of a sub-diffraction size device, the 
bulk values of the CTR of the materials in the structure, and some 
knowledge about the imaging system and in turn the diffraction 
function, are available. The true temperature profile is needed. 
This is an inverse problem which is typically ill-posed and may 
not have unique solution. 

Several techniques in image and signal processing has been 
developed to handle this type of inverse problems [16]. Here, a 
MAP estimation framework with total variation prior is proposed 
to solve this inverse problem. The goal is to extract the true 
temperature profile (f) from the measured TR thermal images (g). 
The following cost function in MAP framework, written in 
lexicographic order, needs to be minimized. 

𝑓 = {
1

2𝜎𝑤
2 ||𝑔 − 𝐇𝑓||2 +  

1

𝜎𝑥
∑ 𝑆𝑖,𝑗|𝑓𝑖 − 𝑓𝑗|{𝑖,𝑗}∈𝐶 }𝑓

𝐴𝑟𝑔𝑚𝑖𝑛   (2) 

Here f is the image that needs to be estimated. H is the filtering 
operator which is the diffraction function, g is the measured 
temperature profile, S is an averaging operator over neighboring 
pixels, σ2

w is the noise variance and σx is the regularization 
parameter that balance the weight between the two terms. The 
first term is called fidelity term and enforces the closeness 
between the measured image and filtered input, while the second 
term (the prior model) penalizes the lack of smoothness between 

the neighboring pixels. The prior model is chosen to be total 
variation or norm-1 so that it preserves the edges and sharp 
boundaries [17], [18]. An iterative coordinate descent (ICD) 
algorithm [19] was developed to solve this optimization problem 
and find the minimum to the cost function. The algorithm 
converged typically in less than 20 iterations. 

To test the proposed approach two case studies as numerical 
experiment were investigated. In case 1, temperature profile of 
200nm heater line was obtained using ANSYS FEM. This 
temperature profile was then filtered with the diffraction function 
corresponding to the TR imaging system with 100x objective 
lens. Gaussian noise was added to the image so that realistic 
experimental results was replicated. The signal-to-noise ratio 
was about ~3db. This noisy-blurry temperature profile is shown 
in Figure 5a. Using the approach proposed in Equation 2, the 
temperature profile is reconstructed. This is shown in Figure 5b 
(Top) along with the ground truth temperature profile (bottom). 
Cross sections are compared in Figure 5c. Marked agreement 
between the reconstructed and the original temperature profiles 
confirms the accuracy of the proposed reconstruction technique.  

 

Figure 5. Image reconstruction for a 200nm single heater line 
case study. (a) A noisy-blurry thermal image is constructed by 
blurring the FEM temperature map with the diffraction function 
of 100x objective lens. Random Gaussian noise added to the 
image. (b) Reconstructed thermal image (Top) using the MAP 
estimation framework compared with the original temperature 
map (bottom) acquired by FEM. (c) Cross section comparisons 
along horizontal direction shows good agreement. 

In the second case study, two 200nm heater lines that are 
separated by 1um gap are modeled using ANSYS. Temperature 
profile is shown in Figure 6a. Taking the same steps as the case 
study 1, a noisy blurry image is constructed and shown in Figure 
6b. It is worth noting that the signal in the noisy-blurry image is 
very weak and buried in the noise (SNR ~3db). Despite that, 
reconstruction was performed successfully and the reconstructed 
image is shown in Figure 6c. Horizontal and vertical cross 
sections are plotted in Figure 6d and 6e. It is evident from these 
figures that the image reconstruction technique proposed here 
can be used as a powerful tool to extract the true temperature of 
sub-diffraction size devices. 
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Figure 6. Image reconstruction for twin heater lines for SNR 
~3db. (a-e) Ground truth, noisy-blurry, reconstructed, horizontal 
and vertical cross sections are shown in different columns.  

To continue this work, one need to look at reconstruction of real 
experimental results, for which the noise variance is not known 
and needs to be estimated. This can be done by solving an 
additional ML estimate in each iteration and updating the cost 
function with the estimated �̂�𝑤

2  [16]. The minimum linewidth that 
can reconstructed is also dependent on SNR, therefore effect of 
SNR of the proposed reconstruction technique needs to be 
investigated.  

4. Conclusions 

Thermoreflectance (TR) imaging as is shown to be able to 
measure thermal images of sub-diffraction size device using LED 
light in the visible range. It is elucidated that due to a change in 
the sign of the thermoreflectance coefficient (CTR) between the 
metal and the semiconductor, the temperature map of sub-
diffraction devices can be discerned. However, the thermal signal 
for objects below diffraction limit underestimate the real 
temperature. The effect of diffraction on TR thermal images of 
sub-diffraction devices is quantified. In practice, it is necessary 
to extract the true temperature profile from apparent measured 
one which is an inverse problem and typically ill-posed. To that 
end, a Maximum-a-posteriori (MAP) framework was developed 
that solves this inverse problem. Numerical experiments were 
designed to examine the proposed approach. Good agreement 
between reconstructed temperature map results, that are restored 
from the noisy-blurry input image data, and original thermal 
profile is demonstrated. 
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